(1) Tinjauan Geometris Perbandingan vektor
Dalam operasi aljabar vektor kita tidak mengenal pembagian dua vektor. Dalam hal ini kita hanya menentukan perbandingan panjang dua vektor, atau perbandingan ruas garis.
Secara geometris terdapat tiga aturan perbandingan ruas garis, yaitu:
Catatan : Bentuk (a) dapat dinyatakan dalam kalimat : “P membagi AB di dalam dengan perbandingan m : n
Bentuk (b) dan (c) dapat dinyatakan dalam kalimat : “P membagi AB di luar dengan perbandingan m : n
Untuk lebih jelasnya ikutilah contoh soal berikut ini :
01. Diketahui sebuah ruas garis AB dengan panjang 9 cm. Jika AP : PB = 2 : 1, gambarlah letak titik P
Jawab
02. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika AP : PB = –2 : 1, gambarlah letak titik P
Jawab
03. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika P membagi AB di luar dengan perbandingan panjang 2 : 3, maka gambarkanlah letak titik P
Jawab
(2) Tinjauan Analitis Perbandingan Vektor
Vektor posisi adalah vektor yang berpangkal di O(0,0) dan dilambangkan dengan satu huruf kecil, sehingga
Sebagai contoh diketahui A(2, -3, 4) maka vektor posisi a adalah a = 2 i – 3 j + 4 k
Jika OA + AB = OB
Sebagai contoh jika diketahui A(2, -1, 6) dan B(-3, 2, 4) maka:
Menurut rumus perbandingan ruas garis
Sehingga untuk A(Ax, Ay, Az) dan B(Bx ,By, Bz) serta P(Px, Py, Pz) terletak segaris dengan AB dan memiliki perbandingan AP : PB = m : n, maka berlaku:
04. Misalkan P, Q dan R adalah tiga titik yang segaris dan berlaku PR : RQ = –2 : 5 maka nyatakanlah vektor r dalam p dan q
Jawab
05. Jika titik A, B dan P kolinier dengan perbandingan AP : PB = –4 : 3 maka nyatakanlah vektor a dalam p dan b
Jawab
06. Diketahui dua titik A(6, 5, –5) dan B(2, –3, –1) serta titik P pada AB sehingga AP : PB = 3 : 1. Tentukanlah koordinat titik P
Jawab
AP : PB = 3 : 1
07. Diketahui titik P(2, –1, 3) dan R(2, 4, 8) serta titik Q pada PR dengan perbandingan PR : QR = 5 : 3. Tentukanlah koordinat titik Q
Jawab
PR : QR = 5 : 3
PR : RQ = 5 : –3
08. Diketahui tiga titik yang segaris yaitu A(7, 7, –2) dan C(–3, 1, 4) dan B sehingga berlaku
AC = ⅔ AB. Tentukanlah koordinat titik B
Jawab
Dua buah vektor dikatakan segaris (kolinier) jika kedua vektor itu sejajar atau terletak pada satu garis yang sama.. Misalkan terdapat tiga vektor yang segaris, seperti gambar berikut ini
Jadi vektor a dan b dikatakan segaris jika terdapat nilai k є Real sehingga a = k. b
Sedangkan tiga titik A, B dan C dikatakan segaris jika terdapat k є Real sehingga
AB = k. AC
Untuk lebih jelasnya ikutilah contoh soal berikut ini:
10. Manakah diantara ketiga vektor berikut ini merupakan vektor yang segaris
a = 2i – 4j + 5k ,
b = 8i – 16j + 10k
c = 6i – 12j + 15k
Jawab
11. Jika vektor a = 2 i – j + x k dan b = –6i + y j + 12 k segaris, maka tentukanlah nilai x dan y
Jawab
12. Diketahui tiga titik yang segaris (kolinier) yaitu A(2, –1, p), B(8, –9, 8) dan C(q, 3, 2). Tentukanlah nilai p dan q
Jawab
Dalam operasi aljabar vektor kita tidak mengenal pembagian dua vektor. Dalam hal ini kita hanya menentukan perbandingan panjang dua vektor, atau perbandingan ruas garis.
Secara geometris terdapat tiga aturan perbandingan ruas garis, yaitu:
Catatan : Bentuk (a) dapat dinyatakan dalam kalimat : “P membagi AB di dalam dengan perbandingan m : n
Bentuk (b) dan (c) dapat dinyatakan dalam kalimat : “P membagi AB di luar dengan perbandingan m : n
Untuk lebih jelasnya ikutilah contoh soal berikut ini :
01. Diketahui sebuah ruas garis AB dengan panjang 9 cm. Jika AP : PB = 2 : 1, gambarlah letak titik P
Jawab
02. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika AP : PB = –2 : 1, gambarlah letak titik P
Jawab
03. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika P membagi AB di luar dengan perbandingan panjang 2 : 3, maka gambarkanlah letak titik P
Jawab
Vektor posisi adalah vektor yang berpangkal di O(0,0) dan dilambangkan dengan satu huruf kecil, sehingga
Sebagai contoh diketahui A(2, -3, 4) maka vektor posisi a adalah a = 2 i – 3 j + 4 k
Jika OA + AB = OB
Sebagai contoh jika diketahui A(2, -1, 6) dan B(-3, 2, 4) maka:
Menurut rumus perbandingan ruas garis
Sehingga untuk A(Ax, Ay, Az) dan B(Bx ,By, Bz) serta P(Px, Py, Pz) terletak segaris dengan AB dan memiliki perbandingan AP : PB = m : n, maka berlaku:
04. Misalkan P, Q dan R adalah tiga titik yang segaris dan berlaku PR : RQ = –2 : 5 maka nyatakanlah vektor r dalam p dan q
Jawab
05. Jika titik A, B dan P kolinier dengan perbandingan AP : PB = –4 : 3 maka nyatakanlah vektor a dalam p dan b
Jawab
06. Diketahui dua titik A(6, 5, –5) dan B(2, –3, –1) serta titik P pada AB sehingga AP : PB = 3 : 1. Tentukanlah koordinat titik P
Jawab
AP : PB = 3 : 1
07. Diketahui titik P(2, –1, 3) dan R(2, 4, 8) serta titik Q pada PR dengan perbandingan PR : QR = 5 : 3. Tentukanlah koordinat titik Q
Jawab
PR : QR = 5 : 3
PR : RQ = 5 : –3
08. Diketahui tiga titik yang segaris yaitu A(7, 7, –2) dan C(–3, 1, 4) dan B sehingga berlaku
AC = ⅔ AB. Tentukanlah koordinat titik B
Jawab
Dua buah vektor dikatakan segaris (kolinier) jika kedua vektor itu sejajar atau terletak pada satu garis yang sama.. Misalkan terdapat tiga vektor yang segaris, seperti gambar berikut ini
Jadi vektor a dan b dikatakan segaris jika terdapat nilai k є Real sehingga a = k. b
Sedangkan tiga titik A, B dan C dikatakan segaris jika terdapat k є Real sehingga
AB = k. AC
Untuk lebih jelasnya ikutilah contoh soal berikut ini:
10. Manakah diantara ketiga vektor berikut ini merupakan vektor yang segaris
a = 2i – 4j + 5k ,
b = 8i – 16j + 10k
c = 6i – 12j + 15k
Jawab
11. Jika vektor a = 2 i – j + x k dan b = –6i + y j + 12 k segaris, maka tentukanlah nilai x dan y
Jawab
12. Diketahui tiga titik yang segaris (kolinier) yaitu A(2, –1, p), B(8, –9, 8) dan C(q, 3, 2). Tentukanlah nilai p dan q
Jawab
MATERINYA MANTAP!
BalasHapus